• 手引き
  • プラットフォーム
  • パートナー
  • English
  • TLC Tealium Learning Center Tealium Learning
    Community
  • Discussions & Ideas Dicussions & Ideas
  • Product Guides Product Guides
  • Knowledge Base Knowledge Base
  • Developer Docs Developer Docs
  • Education Education
  • TLC Blog TLC Blog
  • Support Desk Support Desk
  • CDH Customer Data Hub Customer Data Hub
IQ TAG MANAGEMENT/GETTING STARTED

タグの基本: データマッピングの追加

iQ Tag Managementでタグにデータマッピングを追加する方法について説明します。

データマッピングは、ベンダータグの対応する変数に対して、データレイヤーの変数からデータを送るために必要となる設定です。たとえば、ベンダーがpNameという名前の変数にページ名の情報を収集する場合に、データレイヤーではpage_nameという名前の変数にこの値が入っているとします。page_nameの値をpNameに送るために、データマッピングを使用します。データマッピングを設定すると、タグがトリガーされた場合にそのデータレイヤーの値は必ずベンダーの変数に送られます。

新しいタグを加えるための変数のマッピングを行うには、次の手順に従います。

  1. 先に作成したGoogle Analyticsタグをクリックし、使用可能なオプションを表示します。
  2. Mapped Variables で、[Edit]をクリックします。
  3. Variablesフィールドをクリックしてpage_nameを選択するか、検索対象を絞るために変数フィールドへの入力を行います。
  4. + [Select Destination]をクリックします。マッピングツールボックスが表示されます。
  5. 対象の変数としてTitleをクリックします。これがベンダーの変数名となります。
    タイトル
  6. [Done]をクリックしてタグ設定ダイアログに戻ります。
  7. [Apply]をクリックします。

これで、データレイヤーのpage_nameの値がtitleの変数に送られるようにGoogle Analyticsタグが設定されます。

タグの基本: 読み込みルールの追加
拡張機能

 
  • iQ Tag Management
  • はじめに
    • はじめに
    • データレイヤーの基本
    • データレイヤーの基本: 共通変数の追加
    • タグの基本
    • タグの基本: タグの追加
    • タグの基本: 読み込みルールの追加
    • タグの基本: データマッピングの追加
    • 拡張機能
    • 拡張機能: 拡張機能の追加
    • 保存と公開
    • 変更の保存
    • 公開環境
    • 保存と公開
    • インストールとテスト
    • utag_dataとutag.jsのインストール
    • コードセンターの使用
    • Web Companionの検証
    • 次のステップ
  • EventStream
  • はじめに
    • はじめに
    • データソース
    • データソース: データソースの追加
    • データソース: インストールとテスト
    • Live Events
    • イベント仕様
    • イベント仕様: 仕様の追加
    • イベント仕様: データ品質
    • イベントフィード
    • イベントフィード: フィードの追加
    • コネクタ
    • コネクタ: コネクタの追加
    • トレース
    • トレース: トレースでのテスト
    • 保存と公開
    • 次のステップ
  • AudienceStream
  • はじめに
    • はじめに
    • 属性
    • 属性: エンリッチメント
    • 属性: バッジ
    • 属性: オフラインデータ(オムニチャネル)
    • Visitor Stitching
    • Visitor Stitching: 訪問者ID
    • Visitor Stitching: パート1
    • Visitor Stitching: パート 2
    • Visitor Stitching: 検出
    • オーディエンス
    • コネクタ
    • コネクタ: コネクタの追加
    • トレース
    • トレース: トレースでのテスト
    • 保存と公開
    • 次のステップ
  • Predict ML
  • はじめに
    • 概要
    • 予測の紹介
    • 用語集
    • 使用可能な階層
    • 前提条件
    • 戦略と目的
    • 複数のアプローチ
    • データの準備
    • モデルのスコアとレーティング
    • モデル作成
    • モデルについて
    • モデルの追加
    • 確認とトレーニングの開始
    • モデル評価
    • トレーニング済みバージョンの評価
    • モデルの再トレーニング
    • モデルのデプロイ
    • モデルの削除
    • モデル監視
    • モデルの正常性の表示
    • デプロイ済みモデルの正常性スコア
    • オーディエンスの予測
    • オーディエンスの検討事項
    • 高度なトピック
    • モデルの再トレーニングに関する推奨
    • Visitor Stitchingが予測モデルに影響を与える方法
    • データのコンプライアンスと使用方法
    • マシンラーニングと人工知能(AI)の比較
    • マシンラーニングのコンセプトとテクノロジー

このページはお役にたちましたでしょうか?

最終更新日 :: 2021年June月29日       ご意見有難うございます。
  • 手引き
  • プラットフォーム
  • パートナー
  • モバイル
  • 始める
  • Remote Commands
  • Android (Java)
  • Cordova
  • Flutter
  • iOS (Objective-C)
  • iOS (Swift)
  • React Native
  • Xamarin
  • ウェブ
  • AMP
  • Angular
  • JavaScript (Web)
  • サーバーサイド
  • C#
  • HTTP API
  • Java
  • Node
  • Python
  • Roku
  • Ruby
  • Unity